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1. Introduction

Closed string tachyon condensation has been discussed recently [1, 2]. However, the under-

standing of this phenomenon is still under progress, compared with the open string coun-

terpart [3]. A reason for the difficulty would be the absence of a useful tool to investigate

closed string tachyon condensation. It is desired that there would be a non-perturbative

framework for this purpose. Closed string field theory was applied to the tachyon con-

densation in string theory on orbifolds, and preliminary results were obtained [4], but the

analysis would be more complicated than that in the open string case. To make a mod-

est step forward, a classical gravitational theory coupled to a tachyon was discussed as a

leading order approximation to the closed string field theory [5 – 8]. In [5, 7, 8], a the-

ory of graviton, dilaton and tachyon was discussed, and its classical time evolution was

investigated.

In this paper, we investigate a similar theory, with NS-NS B-field also taken into

account. By the presence of the B-field, an AdS3 background is allowed as a classical

solution, in addition to the well-known linear dilaton solution. Note that similar AdS3

solutions in the context of gauged supergravity were already found in [9, 10], and the

BTZ black hole in almost the same action was discussed in [11]. We also investigate

solutions in which the tachyon field varies along a spatial direction. These solutions would

provide information on the backreaction of turning on the vev of the tachyon to the other

background fields. The stability issue of the AdS3 background is also discussed, focusing

on the presence of localized tachyons.

This paper is organized as follows. In section 2, we investigate classical solutions

of a graviton-dilaton-Bµν -tachyon system. Both constant tachyon solutions and space-

dependent tachyon solutions are considered. In section 3, the presence of tachyons in

bosonic string theory on AdS3 backgrounds is analyzed. Section 4 is devoted to discussion.
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2. Classical solutions

We consider classical solutions of the following action,

S =
1

2κ2

∫

dDx
√−g e−2Φ

[

R + 4(∇Φ)2 − 1

12
H2 − (∇T )2 − V (T )

]

. (2.1)

The same action with Bµν = 0 was discussed in [5, 7, 8]. If we regard this action as a

low energy effective theory of a string theory, it is understood that there are other spatial

directions, for example 26 − D directions for bosonic string, which are compactified on a

manifold M . The tachyon T may come from a relevant operator of a CFT describing M .

We assume that V (T ) has a maximum at T = Tmax and a minimum at T = Tmin > Tmax,

and also assume V (T ) < 0 for Tmax ≤ T ≤ Tmin.

The equations of motion are as follows,

Rµν + 2∇µ∇νΦ − 1

4
HλρµHλρ

ν −∇µT∇νT = 0, (2.2)

∇2Φ − 2(∇Φ)2 − V (T ) +
1

12
H2 = 0, (2.3)

∂ρ(
√−g e−2ΦHρµν) = 0, (2.4)

∇2T − 2∇Φ · ∇T − V ′(T ) = 0, (2.5)

where V ′(T ) = dV (T )
dT

.

2.1 Vacuum solutions

First, let us consider vacuum solutions. The “vacuum” means that the tachyon field T is

constant. The equation of motion of T implies that V ′(T ) = 0, so we choose T = T∗ where

T∗ = Tmax or T∗ = Tmin.

When Hµνρ = 0, it is well-known that a linear dilaton background

gµν = ηµν , Φ = Φ0 ±
√

−1

2
V (T∗) x, (2.6)

where x is a spatial coordinate, is a solution of the equations of motion.

There is also a solution when Hµνρ 6= 0. Let us make the following ansatz,

ds2 = ĝαβ(x)dxαdxβ + ḡkl(y)dykdyl, (2.7)

H012 =
1√
−ĝ

h(x), (2.8)

where α, β = 0, 1, 2 and k, l = 3, · · · ,D − 1, and the other components of Hµνρ are set to

be zero. Then, there is a solution with a constant dilaton,

R̂αβ = −1

2
e4Φ0 ĝαβ , R̄kl = 0, h = ±e2Φ0 = ±

√

−2V (T∗). (2.9)

A typical solution is AdS3 ×RD−3. The radius of AdS3 is determined by the depth of the

potential V (T ). The radius is small as the potential is deep. An explicit form of the AdS3

solution is

ds2 = R2

[

r2(−dt2 + dy2) +
dr2

r2

]

, (2.10)
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where R2 = 2
−V (T∗) . Since the dilaton is constant in this solution, whose value can be

chosen arbitrarily, the perturbative analysis of string theory on this solution is reliable.

2.2 Interpolating solutions

Next, we investigate classical solutions which interpolate the above vacuum solutions, that

is, solutions which vary along a spatial direction, say x, and which approach one of the

above vacuum solutions in the limit x → ±∞. The relevance of such solutions is as follows.

Without loss of generality, one can set Tmax = 0. This maximum can be regarded as a

perturbative vacuum of a string theory which has a tachyon in the mass spectrum, after

choosing a background metric etc. Then by turning on the vev of T with its backreaction

taking into account, one can in principle find which background would be realized at

T = Tmin 6= 0. This procedure would be equivalent to finding a classical solution, varying

along the x-direction, in which T (x) interpolates T = 0 and T = Tmin.

This idea is in analogy with the open string tachyon condensation. Tachyon field on

an unstable D-brane can take a kink solution which asymptotically approaches a minimum

of a tachyon potential. In the asymptotic region the D-brane disappears, while around the

center of the kink a lower dimensional D-brane remains. This suggests that a homogeneous

tachyon condensation would result in a complete decay of the D-brane.

It should be noted that the above analysis might not imply that some background

would be realized after a dynamical process of tachyon condensation, which should be

discussed in another way.

To find the desired solutions, we again employ the ansatz (2.7)(2.8) with the following

more detailed form of the metric,

ĝαβdxαdxβ = −e−2A(x)dt2 + dx2 + e−2B(x)dy2, (2.11)

and we also assume that Φ and T depend only on x.

The equation of motion (2.4) implies, after a suitable shift of Φ,

h = ±εe2Φ(x), (2.12)

where ε is 0 or 1, depending on whether the integration constant is zero or not. Solutions

with ε = 0 have the vanishing H-flux.

Now the equations of motion reduce to

A′′ + B′′ − (A′)2 − (B′)2 + 2Φ′′ +
1

2
εe4Φ − (T ′)2 = 0, (2.13)

A′′ − A′(A′ + B′) − 2A′Φ′ +
1

2
εe4Φ = 0, (2.14)

B′′ − B′(A′ + B′) − 2B′Φ′ +
1

2
εe4Φ = 0, (2.15)

Φ′′ − (A′ + B′)Φ′ − 2(Φ′)2 − V (T ) − 1

2
εe4Φ = 0, (2.16)

T ′′ − (A′ + B′)T ′ − 2Φ′T ′ − V ′(T ) = 0, (2.17)

– 3 –



J
H
E
P
0
2
(
2
0
0
7
)
0
5
0

where the prime indicates the derivative with respect to x.

This system of equations looks complicated, but this becomes tractable when

K = A′ + B′ + 2Φ′ (2.18)

is introduced. It is easy to show that K ′ = K2 + 2V (T ) by using the equations of motion.

Therefore, we can solve the following two equations

T ′′ − KT ′ − V ′(T ) = 0, (2.19)

K ′ − K2 − 2V (T ) = 0, (2.20)

first, and then solve the other equations with T and K regarded as a given function of x.

The qualitative behavior of T (x) and K(x) can be easily deduced from the equa-

tions (2.19)(2.20). The equation (2.19) is the familiar equation of motion of a point particle

in the potential −V (T ) with a position-dependent “friction” term. A solution we would

like to find should behave asymptotically,

T (x) →
{

Tmin, (x → −∞)

Tmax. (x → +∞)
(2.21)

To obtain the above behavior for x → +∞, K must be negative in this limit. Indeed,

K = −
√

−2V (Tmax) is the stable fixed point of K when T ∼ Tmax, and therefore such a

solution can exist. The solution may oscillate around T = Tmax, depending on the value of

K(+∞). It can be shown that the oscillation occurs when 4V ′′(Tmax) < −K(+∞)2. This

condition exactly coincides with the condition for the field T to be really tachyonic around

T = Tmax, that is, its mass2 is below the Breitenlohner-Freedman bound [12, 13] for the

AdS3 space (2.10).

We would like to find K(x) which behaves as follows,

K(x) →
{

−
√

−2V (Tmin), (x → −∞)

−
√

−2V (Tmax). (x → +∞)
(2.22)

In this solution, K starts at a stable fixed point, and end at another stable fixed point

which exists since T varies along x, so such a solution may exist. Note that there might

exist a solution in which K(−∞) = +
√

−2V (Tmin). As we will discuss in section 4, this

solution has a peculiar feature in view of RG flow, and therefore, it will not be investigated

here. Another reason for ignoring such solutions is that, if K > 0 at some range of x,

then T may be accelerated too much, and its motion may be affected by the detailed shape

of V (T ) in a wide range of T . On the other hand, the qualitative behavior of solutions

with (2.22) depends almost only on the existence of a minimum and a maximum of V (T ).

In summary, the equations (2.19)(2.20) admit a solution with the desired asymptotic

behavior. The existence of such a solution can be easily confirmed by the numerical inte-

gration of the equations. See figure 1, 2, for which V (T ) = −1 − 1
2T 2 + 1

4T 4.

Next, let us investigate the behavior of Φ with T and K given above. When ε =

0, (2.16) can be easily integrated once, and the result is,

Φ′(x) = eK(x)

∫ x

−∞

dξ e−K(ξ)V (T (ξ)) + CeK(x), (2.23)
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Figure 1: Plot of T Figure 2: Plot of K

where K′ = K. This solution behaves Φ′ → CeK(−∞)x in x → −∞, but this corresponds

neither a linear dilaton solution nor AdS3 solution. Therefore we set C = 0. Then Φ′

behaves as

Φ′(x) → −V (T (±∞))

K(±∞)
= −

√

−1

2
V (T (±∞)) (x → ±∞). (2.24)

This shows that (2.23) corresponds to a solution which interpolates two linear dilaton

solutions. Note that the remaining equations imply A′ = B′ = 0.

We then consider ε = 1 case. In this case, the equation for Φ is complicated, so we

only discuss its asymptotic behavior which is obtained by solving

Φ′′ − K±Φ′ − V± − 1

2
e4Φ = 0, (2.25)

where K± = K(±∞) and V± = V (T (±∞)) = −1
2K2

±. This equation can be rewritten as

follows,
d2X±

dρ2
= e2X± , (2.26)

where

X± = 2Φ − K±x − log |K±|, ρ = eK±x. (2.27)

The solution is

e−X±(ρ) =
1√
2E±

sinh(
√

2E±(ρ + ρ±)), (2.28)

where E± ≥ 0 and ρ± ≥ 0 are integration constants.

In x → +∞, corresponding to ρ → 0, Φ behaves as follows,

e2Φ →
{

|K+| (ρ+ = 0),

|K+|eX+(0)eK+x (ρ+ 6= 0).
(2.29)

The ρ+ = 0 solution approaches the AdS3 solution, while the ρ+ 6= 0 solution approaches

the linear dilaton solution.

On the other hand, in x → −∞, Φ behaves as follows,

e2Φ →
{

|K−|
√

2E−ρ e−
√

2E−(ρ+ρ−) (E− > 0),

|K−| (E− = 0).
(2.30)
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The E− = 0 solution approaches the AdS3 solution, but the E− > 0 solution does not

approach neither a linear dilaton nor AdS3. In fact, a solution with E− > 0 provides a

singular solution which is not suitable for the low energy effective theory. A more detailed

investigation of classical solutions will be reported elsewhere [14].

We have found that there is an asymmetry in the existence of the interpolating so-

lutions. Let (A,B) denote an interpolating solution which approaches a solution A in

x → −∞, and approaches a solution B in x → +∞. Then there exist

(LD,LD), (AdS3,LD), (AdS3, AdS3), (2.31)

but (LD, AdS3) is absent, where LD indicates a linear dilaton solution. This would imply

the following. Consider an AdS3 vacuum with a tachyon. By turning on the vev of the

tachyon, one could obtain another vacuum, but it cannot be a linear dilaton background.

On the other hand, a linear dilaton background can be possibly related to both another

linear dilaton and AdS3 by a non-zero vev of the tachyon. If the existence of an interpolating

solution would imply a possible endpoint of tachyon condensation, the above results seem to

suggest that an AdS3 background would be more stable than a linear dilaton background,

since the latter can decay into the former, but not vice versa. And, a linear dilaton

background appears in x → −∞ only when the B-field is exactly zero, so, in a generic

situation, an AdS3 background might be likely realized after tachyon condensation.

3. Stability of AdS3 vacua

It was observed in the previous section that an AdS3 background often appears as a back-

ground with a non-zero tachyon vev turned on. It is well known that, in AdS spaces, a

scalar field may be stable even when its mass2 is negative. In AdS3 case, a field is stable if

m2 ≥ − 1

R2
, (3.1)

where R is the radius of the AdS3. This bound on mass is known as the Breitenlohner-

Freedman bound. Therefore, it would be natural to expect that some AdS3 vacua might

be stable at least perturbatively, since for a small AdS3 background some tachyonic states

in the flat space sense might be stabilized. If such a vacuum exists, it would be a possible

endpoint of a tachyon condensation. A similar issue of stability was discussed for AdS5

background in [15, 16]. In the AdS3 case, since string theory on this background is solvable,

we can determine whether such the stabilization mechanism works well.

Let us consider bosonic string theory on AdS3 ×Rn × M . The mass spectrum of this

theory was investigated in [17]. A state whose mass2 is below the BF bound corresponds

to a state in a principal continuous representation without spectral flow. Let |j,N〉 ⊗
|p〉 ⊗ |h〉 be a state in the bosonic string theory on AdS3 × Rn × M . For the principal

continuous representation j = 1
2 + is with s real, and a non-negative integer N represents

the contribution to the L0 eigenvalue from non-zero modes of the current algebra. |p〉 is a

momentum state in Rn, and |h〉 is a state of M with the weight h. The on-shell condition

for this state is
1

k − 2

(1

4
+ s2

)

+ N +
p2

4
+ h − 1 = 0, (3.2)
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where k is the level of SL(2,R) WZW model. This implies that h must satisfy

h ≤ 1 − 1

4(k − 2)
, (3.3)

so that the on-shell condition (3.2) has a solution for some s, p and N . The level k is

determined by imposing that the total central charge is 26,

3k

k − 2
+ n + cM = 26, (3.4)

where cM is the central charge of M . Then the condition for the state to be tachyonic is

h ≤ 1 + n + cM

24
. (3.5)

Since the bulk tachyon is not localized in M , by definition, the corresponding vertex oper-

ator is the unit operator, so h = 0. Therefore, no matter how small the radius of AdS3 is,

the bulk tachyon cannot be stabilized by the background effect.

Then the best we can now hope is to stabilize all localized states in M . Note that

the condition (3.5) shows that the number of tachyonic states tends to be small for small

n + cM . In the following, we set n = 0 so as to reduce the number of localized tachyons.

First, let us consider the case where M is described by a single minimal model. The

central charge cm and the weights hr,s of primary states are as follows,

cm = 1 − 6

m(m + 1)
, (3.6)

hr,s =
(r(m + 1) − sm)2 − 1

4m(m + 1)
, (3.7)

where m ≥ 3, 1 ≤ r ≤ m − 1 and 1 ≤ s ≤ m. The smallest non-zero weight is h2,2 which

satisfies

h2,2 −
1 + cm

24
=

1

m(m + 1)
− 1

12
≤ 0, (3.8)

where the equality holds for m = 3. Therefore, although some states with h < 1 are

stabilized in this background, there is at least one tachyonic state unless m = 3. When M

is a product of minimal models, the situation is worse; there is always a localized tachyon.

Next, we consider the case where M is a group manifold G. The central charge of the

corresponding WZW model with level k is

c =
k dimG

k + h(G)
. (3.9)

We follow the notations of [18]. A primary state |r〉 of the WZW model is labeled by a

representation r of the Lie algebra of G, and its weight hr is

hr =
Qr

(k + h(G))ψ2
. (3.10)

Then the condition for the state |r〉 to be stable is

24Qr ≥ ψ2k(dimG + 1) + ψ2h(G). (3.11)
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Let us focus on G = SU(N). By choosing ψ2 = 2, the above condition becomes

12Qr ≥ kN2 + N. (3.12)

Therefore, if this condition holds for all possible representations (except for the trivial

representation which is not satisfy (3.12)), then it is concluded that there is no localized

tachyon in the theory.

Let us check for the fundamental representation. For this case Qr = N − 1
N

in our

normalization. The condition (3.12) now becomes

k ≤ 11N2 − 12

N3
. (3.13)

The solutions of this inequality are

(N, k) = (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2),

(5, 1), (5, 2), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1). (3.14)

For the other combinations of (N, k) there is at least one localized tachyon.

For SU(N), the quadratic Casimir Qr has the minimum value when r is the fundamen-

tal representation. This means that if |N〉 is not tachyonic, all the other primary states

are not tachyonic. Therefore, for the above combinations of (N, k), there is no localized

tachyon in the bosonic string on AdS3 × SU(N). Since WZW model with level k contains

primary states whose corresponding Young diagrams have at most k columns, one can

check the absence of the localized tachyon just by inspection, using

Qr = nN − n2

N
+

k
∑

i=1

(ak)
2 −

l
∑

j=1

(bj)
2, (3.15)

where the Young diagram Y for r has rows of length a1 ≥ a2 ≥ · · · ≥ ak > 0, and columns

of length b1 ≥ b2 ≥ · · · ≥ bl > 0. n =
∑k

i=1 ak =
∑l

j=1 bj is the number of boxes in Y .

It has been observed that there are choices of M in which all non-trivial states are

stable, due to the effect of AdS3 background. Such a background of the form AdS3 × M

could be a possible endpoint of a condensation of a localized tachyon, in a similar sense

as the flat space is an endpoint of a localized tachyon condensation in Type 0 string on a

non-compact orbifold. It is very interesting to find other examples of such backgrounds. A

coset G/H would be a candidate for M .

4. Discussion

We discussed classical solutions of the action (2.1) which would be regarded as a simplified

model for the low energy effective theory of a string theory which has a tachyon. We

considered all massless fields in the NS-NS sector, and found AdS3 solutions in addition

to the linear dilaton solutions. We also investigated interpolating solutions which connect

among AdS3 solutions and linear dilaton solutions. An interesting observation is that,

requiring K < 0 everywhere, there is an “asymmetry” in the interpolating solutions; there

– 8 –
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exists a solution which approaches an AdS3 solution in x → −∞ and linear dilaton solution

in x → +∞, but there is no solution similar to this one with AdS3 solution and linear

dilaton solution interchanged. This might suggest that a linear dilaton solution could not

be an endpoint of a tachyon condensation starting from an AdS3 solution.

We also discussed the stability of the AdS3 solutions. We found explicit examples

of backgrounds, AdS3 × SU(N), where bosonic string on this background does not have

tachyons except for the bulk one. Primary states of SU(N) WZW models have mass2 above

the BF bound.

The existence of a solution interpolating two AdS3 solutions might suggest a holo-

graphic description of a tachyon condensation similar to the AdS/CFT correspondence [19].

Note that the system we discussed only contains the NS-NS fields, so the analysis of clas-

sical solutions in Type 0 string is parallel to the ones in previous sections. The spatial

coordinate x is related to r in the AdS3 solution (2.10) as r ∝ e−
1

2
K(±∞)x. This implies

that x → −∞ corresponds to r → 0, and x → +∞ corresponds to r → ∞, provided K < 0

everywhere. In other words, the IR limit corresponds to the minimum of V (T ), and the

UV limit corresponds to the maximum of V (T ), so the relation between the turning on the

tachyon vev and the RG flow in terms of AdS/CFT is natural. If K(−∞) is chosen to be

positive, then x → −∞ also corresponds to the UV limit.

A possible existence of a holographic description of tachyon condensation would be a

useful tool to investigate closed string tachyon condensation. In particular, the boundary

theory of the string theory on AdS3 × SU(N), if exists, would be useful to investigate the

bulk tachyon and its condensation, since the only instability of this boundary theory should

be related to the bulk tachyon, and the analysis of the (im)possibility of its stabilization

would be likely tractable.

Since AdS3 background can stabilize all relevant operators in some cases, it would

be possible to construct an AdS3 vacuum solution of a string theory which is non-

supersymmetric but perturbatively stable, if the string theory does not have bulk tachyon

from the start. It would be interesting to discuss its stability in the non-perturbative sense,

and also its relation to the supersymmetric AdS3 solutions, for example solutions in [9, 10].
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